Upcoming Applications

Extraction of DNA and RNA from FFPE tissues

Extraction of DNA and RNA from fresh/frozen tissues

Extraction of Total RNA from cells and tissues

Extraction of miRNA from body fluid

Extraction of nucleic acid from large volume (5mL) of whole blood

MagDEA Dx LV

Instrument compatibility magLEAD 5bL

MagDEA Dx LV is a nucleic acid extraction reagent developed for automated large volume extraction/purification systems.

Features of MagDEA Dx LV

Capable of extracting nucleic acid from large volume (5mL) of whole blood Only takes about 70 minutes for extraction Reagent management (Lot, expiration date, etc.) by QR code

Specifications

	MagDEA Dx SV	MagDEA Dx LV
Extraction sample volume	200µL or 400µL	5mL
Elution volume	50µL, 100µL, 200µL	1 mL
Sample type	whole blood, plasma, serum, urine, swab, CSF	whole blood
Extraction time	within 25 minutes	about 70 minutes
Instruments	magLEAD 6gC, magLEAD 12gC geneLEAD series	magLEAD 5bL
Disposables	magLEAD consumable kit (Cat #: F4430) geneLEAD Consumable set (Cat #: F2100-002) BT-20 Tip & Piercer As (Cat #: F7230)	
Test / kit	48 tests / kit	10 tests / kit

For customers in Asia / Pacific For customers in North / South America 88 Kamihongou, Matsudo-shi, Chiba 271-0064, Japan Tel: +81-47-303-4801 Fax: +81-47-303-4811 URL. http://www.pss.co.jp E-mail: service@pss.co.jp

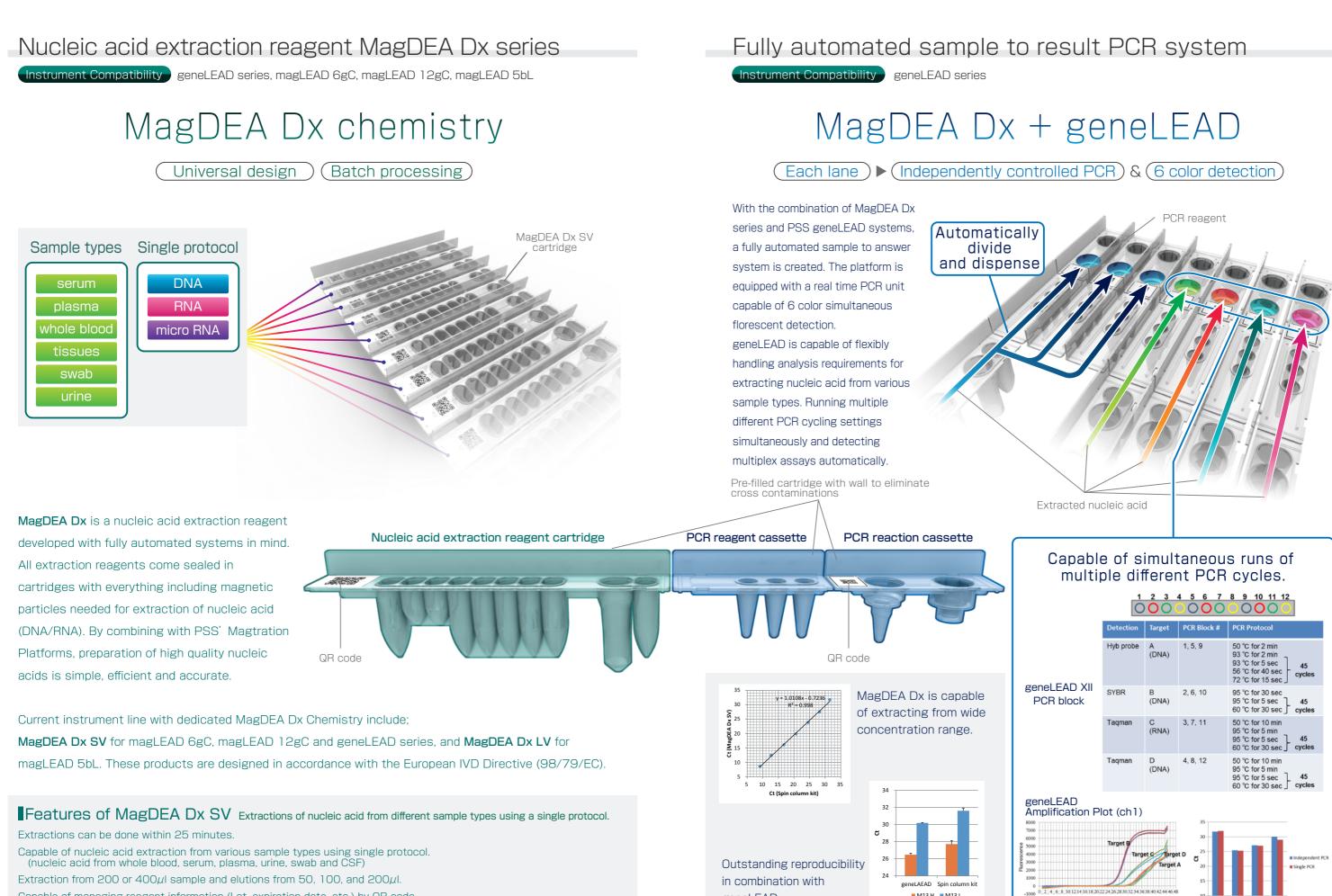
Precision System Science Co., Ltd. Precision System Science USA, Inc. Tel: +1 (925) 960-9180 / FAX: +1 (925) 960-9184 E-mail: contact@pssbio.com •For customers in Europe / Africa / Middle East Precision System Science Europe GmbH Tel: +49 (0) 6131 6966 468 / FAX: +49 (0) 6131 6966 469

E-mail: contact-psse@pss.co.jp

The performance, specifications and appearance of products described in this catalogue are subject to change without prior notice.

CE/IVD Approved

Universal Nucleic Acid Extraction Chemistry MagDEA Dx is the solution for next generation genetic test systems


Magtration Technology Platform Pre-packed nucleic acid extraction reagent for genetic tests

MagDEA Dx

Produced by Precision System Science Co., Ltd.

Capable of nucleic acid extraction from various sample types using single protocol. (nucleic acid from whole blood, serum, plasma, urine, swab and CSF) Extraction from 200 or 400μ l sample and elutions from 50, 100, and 200μ l. Capable of managing reagent information (Lot, expiration date, etc.) by QR code.

Outstanding reproducibility in combination with geneLEAD.

neLAEAD Spin column ki M13 H M13 L

1 2 3 4 5 6 7 8 9 10 11 12 0 0 0 0 0 0 0 0 0 0 0 0 0					
	Detection	Target	PCR Block #	PCR Protocol	
eneLEAD XII PCR block	Hyb probe	A (DNA)	1, 5, 9	50 °C for 2 min 93 °C for 2 min 93 °C for 5 sec 56 °C for 40 sec 72 °C for 15 sec	
	SYBR	B (DNA)	2, 6, 10	95 °C for 30 sec 95 °C for 5 sec 45 60 °C for 30 sec cycles	
	Taqman	C (RNA)	3, 7, 11	50 °C for 10 min 95 °C for 5 min 95 °C for 5 sec 60 °C for 30 sec 45 cycles	
	Taqman	D (DNA)	4, 8, 12	50 °C for 10 min 95 °C for 5 min 95 °C for 5 sec 60 °C for 30 sec 45 cycles	
eneLEAD mplification Plot (ch1)					
30 Target 0 Target 0 Ta					
Cycle A B C D					